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Abstract 

In this paper, we present some matrix and constructive results that check  
freeness for a given finitely generated projective S-module M of constant rank, 
where S is a Hermite commutative ring. In particular, we give a matrix 
characterization of PF rings (a commutative ring S is PF is every f.g projective    
S-module is free). In addition, following the ideas in [3], we will exhibit an easy 
procedure for computing the module ( ) ,,Hom NMS  where S is an arbitrary 

Noetherian commutative ring with some natural computational conditions. 

1. Introduction 

It is well known that, if S is a principal ideal domain and M is a 
finitely generated (f.g) projective S-module, then M is free; the same is 
true, if S is a local ring. A less trivial situation is when 
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[ ],,,1 nxxKS …=  K is a field, but the famous Quillen-Suslin’s theorem 

shows that any f.g projective module over S is also free (see [20] and [22]). 
However, if S is a Dedekind domain, then not any f.g projective module 
over S is free (see [6]). Thus, given a ring S and a concrete f.g projective 
module M, it is interesting to have a method for checking, if M is free. In 
this paper, we present some matrix and constructive results that checks 
freeness for a given finitely generated projective S-module M of constant 
rank, where S is a Hermite commutative ring (compare with [8], [9], [15] 
and [19]). A commutative ring S is Hermite, if each stably free module 
over S is free. Some well known examples of Hermite rings are semilocal 
rings and principal ideal domains; [ ]nxxR ,,1 …  is Hermite, if R a PID. 

In addition, we will exhibit in the last section a procedure for 
computing the module ( ),,Hom NMS  where S is an SC commutative 

ring (see the Definition 7) and M, N are f.g modules over S. The           
Hom modules were computed in [12] for the special case when 

[ ],,,: 1 nxxRS …=  with R is a commutative Noetherian Gröbner soluble 

ring. Gröbner soluble rings are defined as follows (see [11]); we say that a 
ring S is Gröbner soluble ( ),GS  if: 

(i) Given elements ,,,, 1 Saaa r ∈…  there exists a procedure to 

decide, if >∈< raaa ,,1 …  and if it is, to compute Scc r ∈,,1 …  such 

that .11 rrcacaa ++= "  

(ii) Given ,,,1 Saa r ∈…  there exists a procedure to find a set of 

generators for the S-module 

[ ] {( ) }.0,,: 1111 =++∈= rr
r

rrS cacaSccaaSyz "……  

From now on, S represents an arbitrary commutative ring, [ ]nxxS ,,1 …  

is the polynomial ring over S in 1≥n  variables; for ( )SMrs rs×≥ ,1,  is 

the set of rectangular matrices of size ,rs ×  and ( )SGLr  is the general 

linear group of invertible matrices over S of size sSrr .×  is the free       

S-module of rank s consisting of columns vectors of size 1×s  with entries 
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in S. If ,,,1
s

r S∈ff …  then ( ) {( ) ++∈= "…… 1111 ,,:,, fff bSbbSyz r
rr  

},0=rrb f  and for ( ) ( )FSyzSMF rs ,×∈  is the module of syzygies of the 

columns of F. For a matrix UU ,  represents the module generated by its 

columns. In general, we will use the habitual notation and terminology of 
matrix and constructive methods over commutative rings (see, for 
example, [6], [8], [9], [15]-[17]). 

2. Main Result 

We recall that a commutative ring S is Hermite (H) is every stably 
free S-module is free. The following theorem and the Corollaries 2 and 5 
are the main results of the paper. 

Theorem 1. Let S be a Hermite ring. Then, 

(i) Let M be a finitely generated projective S-module of constant rank r 

with presentation .001 → → → MSS FsFl M is free, if and only 
if there exists a matrix ( )SGLU s∈  such that 

.
00
0

1 



= −rsI

UF   (2.1) 

In such case, a basis of M is given by the last r columns of .1−U  

(ii) Let M be a direct summand of sS  and MSF s →:0  be the 
canonical projection on M. M is free with ( ) ,rMrank =  if and only if there 
exists a matrix ( )SGLP s∈  such that 

.
0

001
0 




=−

rI
PPF   (2.2) 

In such case, a basis of M is given by the last r columns of .1−P  

Proof. (i) ⇒ ) Since M is free and has constant rank r, then M has a 
basis of r elements; moreover, since r coincides with the minimal number 

of generators of M, then .sr ≤  Let rs SSG →:0  be the canonical 



VERÓNICA CIFUENTES and OSWALDO LEZAMA 292 

projection given by ( ) ,0 0=jG e  if rsj −≤≤1  and ( ) ,0 iirsG ee =+−  if 

;1 ri ≤≤  note that the matrix of 0G  in the canonical bases is 

[ ].00 rIG =  

Let rSMH →:  be an isomorphism, then we have the following 
diagram with first row exact 

 (2.3) 

where U and 1G  are defined as follows: since M is projective, there exists 
sSMF →′ :0  such that MiFF =′00  and ( ) ( );ker 00 MFFSs ′⊕=  let 

( ) ,1, riH ii ≤≤= ev  then { }rvv ,,1 …  is a basis of M. Let ( ) ,0 iiF zv =′  

then { }rzz ,,1 …  is a basis of ( ).0 MF ′  Note that ( )0ker F  is stably free of 

constant rank .lrs ≤−  By the hypothesis, ( )0ker F  has a basis 

{ }rs−ww ,,1 …  of size ,rs −  and then { }rrs zzww ,,;,, 11 …… −  is a 

basis for .sS  With this, we define U in the following way: 

( ) ,1for, rsjU jj −≤≤= ew  

( ) .1for, riU irsi ≤≤= +−ez  

We observe that U is an isomorphism and moreover, .00 HFUG =  We 

define ,11 UFG =  thus the diagram (2.3) is commutative. We will prove 

that the second row of (2.3) is exact. By the construction, 0G  is surjective; 

,01010 == FHFUFG  and then ( ) ( ).kerIm 01 GUF ⊆  Moreover, ( )0ker G  

( ):Im 1UF⊆  in fact, let ( ),ker 0Gx ∈  so ( )zUx =  and hence ( )( ) =zUG0  

( ),0 0 zHF=  i.e., ( ) 00 =zF  since H is injective; from this, we get that 

( ) ( ),Imker 10 FFz =∈  so ( )wFz 1=  and ( ( )),1 wFUx =  i.e., Im∈x  
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( ).1UF  Thus, ( ) ( ) ( )011 kerImIm GUFG ==  and hence the second row of 

(2.3) is exact. Finally, ( ) ,,,ker 10 rsG −= ee …  and then 

.
00
0

1 



= −rsI

UF  

)⇐  Now, we assume that there exists a matrix ( )SGLU s∈  that 

satisfies (2.1). As in the previous part, we consider again the canonical 
projection ,0G  so ( ) ( );Imker 10 UFG =  we have the diagram 

 (2.4) 

where H is defined as follows: let ,Mm ∈  there exists sSx ∈  such that 

( ) .0 mxF =  We define ( ) ( );: 0 xUGmH =  if sSx ∈′  is such that 

( ) ,0 mxF =′  then ( ) ( ),Imker 10 FFxx =∈′−  so ( ),1 zFxx =′−  with 

;lSz ∈  from this, we get ( ) ( ) ( ) ( ),kerIm 011 GUFzUFxxU =∈=′−  so 

( ) ( ),00 xUGxUG ′=  this means that H is well defined. Note that H is an 

S-homomorphism such that .00 UGHF =  From this, we get that H is 

surjective and hence ,NSM r ⊕≅  but since M has constant rank r, then 

0=PN  for each prime ideal of S, i.e., 0=N  and M is free. 

Finally, we note that a basis of ( ) MMF ≅′0  is ( ),1
irsi U +−

−= ez  

,1 ri ≤≤  i.e., the last r columns of .1−U  

(ii) ⇒ ) Let M be free with rank r being a direct summand of ,sS  then 

sr ≤  and ;MMSs ⊕′=  we can repeat the reasoning of the first part of 

(i): let 0F  be the canonical projection on M and rSMH →:  be an 

isomorphism, let { } Mr ⊂zz ,,1 …  such that ( ) ,1, riH ii ≤≤= ez  then 
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{ }rzz ,,1 …  is a basis of M. Since S is a Hermite ring, M ′  is free, let 

{ }rs−ww ,,1 …  be a basis of .M ′  Then { }rrs zzww ,,;,, 11 …… −  is a 

basis for .sS  With this, we define U as above, then U is an isomorphism 
and we get the following commutative diagram 

 

where 0T  is given by ( ) ,0 0=jT e  if rsj −≤≤1  and ( ) ,0 irsirsT +−+− = ee  

if ,1 ri ≤≤  i.e., 

.
0

00
0 




=
rI

T  

Thus, we set ( )SGLUP s∈=  and we get .0
1

0 TPPF =−  

⇐ ) We observe that ( ) ( ) === −1
00 ImIm PFFM  module generated 

by the last r columns of .1−P  This means that a basis for M is given by 

the last r columns of .1−P  ⁯ 

An interesting consequence of the previous theorem is the following 
matrix characterization of PF rings (a commutative ring S is PF is every 
f.g projective S-module is free, see [13]). In the proof, we will use a well 
known matrix interpretation of f.g projective modules: let S be a 
commutative ring and M be an S-module. Then, M is an f.g projective 
module, if and only if there exists an idempotent matrix F over S such 
that ( ).Im FM ≅  

Corollary 2. Let S be a commutative ring. S is PF, if and only if for 
each 1≥s  and every idempotent matrix ( ),SMF s∈  there exist an 

invertible matrix ( )SGLP s∈  and some sr ≤≤0  such that 

.
0

001





=−

rI
PFP  
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Proof. ⇒ ) Let ( )SMF s∈  be an idempotent matrix and let M be the 

R-module generated by the columns of F. We have sFs SS  →  with 

( )FM Im=  and ,2 FF =  so ,MMSs ′⊕=  i.e., M is a finitely 

generated projective module, then by the hypothesis, M is free. Since S is 
H, we can apply the Theorem 1 (ii). 

)⇐  Let M be a finitely generated projective R-module, so there exists 

1≥s  such that ;MMSs ′⊕=  let sFs SS  →  be the canonical 

projection on M, so F is idempotent and, by the hypothesis, we have the 
following commutative diagram 

 

with 

.
0

00





=
rI

D  

Then, ( ) ( ) .ImIm rSDFM ≅≅=  ⁯ 

3. Equivalent Matrices and Free Modules 

According to (2.1), for the matrix presentation 1F  of the free              

S-module M, there exists ( )SGLU s∈  such that ,11 GUF =  with 

,
00
0

1 



= −rsI

G  

i.e., 1F  is equivalent to .1G  In a similar way, we have a similarity 

relationship in (2.2). From this arises, the problem about to have a 
procedure for computing the matrices U and P, or more general, to study 
the equivalence of matrices over commutative rings from a constructive 
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point of view. Next, we present some results in such direction, see the 
Corollary 5. We will exhibit also a procedure for computing the module 

( ),,Hom NMS  where S is an SC commutative ring (see the Definition 7) 

and M, N are finitely generated modules over S. The Hom modules were 
computed in [12] for the special case when [ ],,,1 nxxRS …=  with R is a 

commutative Noetherian GS ring. Some ideas behind the results have 
been taken from [2], where similar problems have been considered for 
certain special class of computable Ore algebras. 

We start with some beautiful results that involve Kronecker product 
of matrices. 

Definition 3. Let S be a commutative ring and [ ] ( )SMeE srij ′×∈=  

be a matrix. ( )Ecol  is the column vector obtained concatenating the 
columns of E, 

( ) ( ) .,,;;,,:col 1111
srt

srsr SeeeeE ′
′′ ∈= ………  

Proposition 4. Let S be a commutative ring. Then: 

(i) If ( ) ( ),, SMUSME sssr ×′′× ∈∈  and ( )SMF ls×∈  are matrices, 
then 

( ) ( ) ( ).colcol UEFEUF t ⊗=  

(ii) Let ( ) ( ) ( ),,, SMUSMGSMF sslsls ×′′×′× ∈∈∈  and ( ).SMV ll ×′∈  
Then, 

,GVUF =  if and only if [ ] ( )
( )

,0
col

col =








−
⊗⊗′

V
UIGFI

t
l

t
s  

i.e., 

,GVUF =  if and only if [ ( ) ( )] [ ].colcol l
t

s
tt IGFISyzVU ⊗⊗∈− ′  

(iii) With the notation of (ii), let {( ) }.,:, GVUFVUGF ==P  Then 

GF ,P  is an S-module and [ ]., l
t

sGF IGFISyz ⊗⊗≅ ′P  
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(iv) Let ss =′  and .ll =′  F and G are equivalent, if and only if there 

exists a vector [ ( ) ( )] [ ],colcol l
T

s
TT IGFISyzVU ⊗⊗∈−  with ∈U  

( )SGLs  and ( ).SGLV l∈  

Proof. (i) This follows from a direct computation of product and 
Kronecker product of matrices: 

( ) ;col

11

111

211

2111

111

1111











































=

∑∑

∑∑

∑∑

∑∑
∑∑

∑∑

′

==

′

==

′

==

′

==

′

==

′

==

wlzwrz
s

z

s

w

wlzwz
s

z

s

w

wzwrz
s

z

s

w

wzwz
s

z

s

w

wzwrz
s

z

s

w

wzwz
s

z

s

w

fue

fue

fue

fue

fue

fue

EUF

#

#

#

#

 

( ) ( ) .col
1

1

11

1111

11111111

11111111

111111111111

























































=⊗

′

′

′′

′′

′′

′′

ss

s

s

srslrslsrlrl

sslslsll

srsrssrr

ssss

t

u

u

u

u

efefefef

efefefef

efefefef

efefefef

UEF

#

#

#

"""
####

"""
####

"""
####

"""

 

(ii) Note that 

,

111111

1111111111



















−−

−−

=−

′
′

=′=′
′

=′=

′

==

′

==

∑∑∑∑

∑∑∑∑

wlws
l

wzlzs
s

zwws
l

wzzs
s

z

wlw
l

wzlz
s

zww
l

wzz
s

z

vgfuvgfu

vgfuvgfu
GVUF

"

##
"

 

and for [ ] ( )
( )

,
col

col









−
⊗⊗′

V
UIGFI

t
l

t
s  we have 
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.

0000

0000

0000

0000

1

1

11

1

1

11

11

1111

1111

111111



















































−

−

−

−





























′

′

′

′

′′′

′′′

′

′

ll

l

l

ss

s

s

lsssll

lsss

lsll

ls

v

v

v

v
u

u

u

u

ggff

ggff

ggff

ggff

#

#

#

#

#

#

""""""
#%##%#####

""""""
#%##%#
""""""

#%##%#####
""""""

 

Thus, (( ) ) ,0col =− tGVUF  if and only if [ ] ( )
( )

,0
col

col =








−
⊗⊗′

V
UIGFI

t
l

t
s  

i.e., ,GVUF =  if and only if [ ] ( )
( )

.0
col

col =








−
⊗⊗′

V
UIGFI

t
l

t
s  

(iii) This follows from (ii), if we define ( ) ( ) ( ,:,, UUVUVU ′+=′′+  

)VV ′+  and ( ) ( ),,:,. aVaUVUa =  with .Sa ∈  

(iv) This is a direct consequence of (ii) and the fact that a square 
matrix U over a commutative ring S of size ss ×  is invertible, if and only 

if its columns generate .sS  ⁯ 

From Proposition 4, we can complement the Theorem 1 with the 
following matrix constructive result. 

Corollary 5. Let S be a Hermite ring and M be an S-module. 

(i) Let M be a finitely generated projective S-module of constant rank r 
given by the finite presentation 

,001 → → → MSS FsFl  

and let 
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



= −

00
0

1
rsI

G  

of size .ls ×  M is free, if and only if there exists 

[ ( ) ( )] SyzIU T
l

T ∈−colcol  [ ],11 l
T

s IGFI ⊗⊗  with ( ).SGLU s∈  In 

such case, a basis of M is given by the last r columns of .1−U  

(ii) Let M be a direct summand of sS  and ss SMSF ⊆→:0  be the 

canonical projection on M. Let 






=
rI

T
0

00
0  

of size .ss ×  Then, M is free with ( ) ,dim rM =  if and only if there exists 

[ ( ) ( )] [ ],colcol 00 s
T

s
TT ITFISyzPP ⊗⊗∈−  with ( ).SGLP s∈  In 

such case, a basis of M is given by the last r columns of .1−P  

Another interesting result valid for arbitrary commutative rings is 
the following proposition that gives a procedure for computing the Hom 
modules in a more simple and general way (compare with [12]). 

Proposition 6. Let S be a commutative ring, MM ′,  modules over S 

and let 

,001 → → → MSS FsFl  

001 →′ → → ′′ MSS GsGl  

be finite presentations of M and .M ′  With the notation of Proposition 4, if 
( ),,Hom MMH S ′∈  then there exists ( ) 11,, GFVU P∈  such that the 

following diagram is commutative: 

. (3.1) 
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Conversely, if ( ) ,, 11,GFVU P∈  then there exists ( )MMH S ′∈ ,Hom  such 

that the previous diagram is commutative. 

Additionally, if ( )1ker G  is finitely generated, then there exists a 

matrix 2G  of size tl ′×′  (for some t′ ) such that 

( ) ,,Hom 11, KP GFS MM ≅′  

where 

{( ) ( ) ( )}.,,,,: 21221111 SMZSMZwithZGFZVZGUVU ltsl ×′×′ ∈∈+===K  

Proof. The proof of the first part is classical and can be found also in 

[21]. Let ( ),,Hom MMH S ′∈  since sS  is projective, there exists sSU :  
sS ′→  such that ;00 UGHF =  moreover, ,01010 == FHFUFG  so 

( ) ( ) ( ).ImkerIm 101 GGUF =⊆  Then, since lS  is projective, there exists 
ll SSV ′→:  such that .11 VGUF =  This shows that the diagram (3.1) is 

commutative. 

Conversely, let ( ) ,, 11,GFVU P∈  i.e., ;11 VGUF =  let ,Mx ∈  then 

there exists sSy ∈  such that ( ) ,0 xyF =  so we define ,: MMH ′→  

( ) ( ).: 0 yUGxH =  Note that H is well defined: in fact, if ( ) ==′ xyF0  

( ),0 yF  then ( ) ( )10 Imker FFyy =∈−′  and there exists lSz ∈  such 

that ( ) ,1 yyzF −′=  so ( ) ( ( )) ( ) 010100 ===−′ zVGGzFUGyyUG  and 

hence ( ) ( ).00 yUGyUG ′=  Moreover, H is an homomorphism and satisfies 

,00 UGHF =  i.e., the diagram (3.1) is commutative. 

Now, we will prove the second part. We define 

( ),,Hom11, MMSGF ′ → αP  

( ) ,, ,VUHVU 6  

where VUH ,  is defined as above, i.e., 
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( ) ( ),: 0, yUGxH VU =   (3.2) 

with ( ) ,,0 MxxyF ∈=  and .sSy ∈  It is easy to check that α  is an      
S-homomorphism, moreover, as we saw, α  is surjective. Let ( )α= ker:K  
and ( ) ,, K∈VU  then ,0, =VUH  and we have the following commutative 

diagram 

 

note that ( ) ( ) ( ),ImkerIm 10 GGU =⊆  hence there exists an 

homomorphism ls SSZ ′→:1  such that .11 UZG =  By the hypothesis, 

there exists an homomorphism lGt SS ′′  → 2  such that ( )12 : GSyzG =  
( ),ker 1G=  where t′  is the size of some set of generators of ( ).ker 1G     

We observe that ( ) ( ):ImIm 211 GFZV ⊆−  in fact, for ,lSw ∈  we have 
( ) ( ) ( ) ( ) ( ) ( ) ,0111111111 =−=−=− wUFwUFwFZGwVGwFZVG  thus, 

( ) ( ) ( ) ( )2111 Imker GGwFZV =∈−  and there exists tSw ∈′  such that 

( ) ( ) ( ).112 wFZVwG −=′  So, there exists an homomorphism →lSZ :2  
tS ′  such that ,1122 FZVZG −=  i.e., .2211 ZGFZV +=  

Conversely, let ( ) 11,, GFVU P∈  such that 11ZGU =  and += 11FZV  

22ZG  for some matrices ( ) ( ),, 21 SMZSMZ ltsl ×′×′ ∈∈  then ( ) =xH VU ,  

( ) ( ) ,0100 == yZGGyUG z  with ( ).0 yFx =  This means that ,0, =VUH  

i.e., ( ) ( )α∈ ker, VU  (note that the condition on V was not used). ⁯ 

According to the previous proposition, given ( ),,Hom MMH S ′∈  the 
matrices VU ,  for H in general are not unique, however, by Proposition 4 

(ii), any generator of [ ]l
t

s IGFI ⊗⊗′ 11  gives a such pair of matrices 
computed by the following algorithm: 
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Computation of matrices U and V 

Input: Matrices 1F  and 1G  as in (3.1). 

Output: Matrices U and V as in (3.1) given by 

( )tUcol  and ( ).col V  

Initialization: Define the matrix 

[ ].: 11 l
t

s IGFIK ⊗⊗= ′  

Compute ( ).KSyz  

Choose any generator of ( )KSyz  presented as 

[ ( ) ( )] ,colcol tt VU −  where ( )tUcol  is a 
column vector conformed by the first ss ′  
entries of the chosen generator and ( )Vcol  is a 
column vector conformed by the next ll′  
entries. 

Conform U and V with the entries of ( )tUcol  and 
( ).col V  

The previous algorithm is effective, if we know how to compute 
syzygies of matrices over S, this holds, for example, if [ ],,,1 nxxRS …=  
where R is a Noetherian Gröbner soluble ring, see [5] and [12]. 

Definition 7. A commutative ring S is syzygy computable ( ),SC  if 

there exists an effective procedure for computing ( )FSyz  for any matrix 
F over S. 

Corollary 8. Let S be a Noetherian SC commutative ring. If MM ′,  

are finitely generated S-modules, then ( )MMS ′,Hom  is effective 

computable. 

Proof. Finite presentations for M and M ′  as in the Proposition 6, 

and a finite set of generators of [ ]l
t

s IGFISyz ⊗⊗′ 11  can be effective 
computed since S is a Noetherian SC ring: 
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[ ] [ ( ) ( )] [ ( ) ( )] ;colcol,,colcol 1111
t

t
t
t

tt
l

t
s VUVUIGFISyz −−=⊗⊗′ …  

from the above algorithm and the proof of Proposition 6, we get that 

( ) .,,,Hom ,, 11 tt VUVUS HHMM …=′  ⁯ 

Example 9. We will repeat the example presented in the Section 3 of 
[12], but using the previous algorithm. Let [ ],,: 10 yxS Z=  we want to 

compute ( ),,Hom NMS  where 2
21, SM >⊆=< ff  and ,, 21 gg=<N  

,2
3 S>⊆g  with ( ) ( ) 1

22
2

2
1 ,4,7,2,33 gff xyyxyyxyxyx −+=−+=  

( ) ( ),,,,0 2 xyx == g  and ( ).,23 xx=g  We choose the monomial order 

POTREV on ( )2Mon S  and deglex on ( ),Mon S  with yx >  (see [11]). 

Step 1. We compute finite presentations for M and N: 

,, 0101 322 NAAMAA GGFF  → → → →  

with 

( ) ,
5
5

,
42

733
012

22
0 



==









−−
++=

x
y

FSyzF
xyyxy
yxyxyxF  

 ( ) .
5

80
925

,
20

010














 +
==



=

y
x

yx
GSyzG

xxx
xy

G  

Step 2. With the notation of the above algorithm, we have == ls ,2  
,2,3,1 =′=′ ls  and we must compute ( ),KSyz  with 

[ ] [ ] ,1
5

80
925

55
100
010
001
















⊗















 +
⊗
















=

y
x

yx
xyK  

i.e., 

.
5550000

80005500
925000055















 +
=

yxy
xxy

yxxy
K  
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With the procedure described in [12], we get a system of generators of 
( ):KSyz  

( ) ( ) ( ) ,0,,1,0,0,0,1,0,0,,0,1,0,0,0,1,0,2,0,0,0,0,0,0 TTT xy −−−−  

( ) ( ) ( ) ,0,0,0,0,0,2,0,0,0,0,,,0,0,0,0,5,,0,0,0,0,0,0 TTT yxy −−  

( ) ( ) ( ) ,0,0,0,2,0,0,0,0,0,0,0,0,,,0,0,0,0,0,0,2,0,0,0 TTT yx −  

( ) .0,0,2,0,0,0,0,0 T  

Step 3. From the above generators, we obtain the pair of matrices 
( ) :101,, ≤≤ iVU ii  

;
0

:,
01
00
01

:;
0
2

:,
00
00
00

: 2211 



−=

















−

−
=



−=
















=

y
VUVU  

;
5

:,
00
00
00

:;
0

:,
10
00
10

: 4433 




−

=















=



−=

















−

−
=

y
VU

x
VU  

;
0
0

:,
00
02
00

:;
0
0

:,00
00

: 6655 



=
















=



=

















−
= VUV

yx
U  

;
0
0

:,
00

00
:;

0
0

:,
00
20
00

: 8877 



=
















−=



=
















= VyxUVU  

.
0
0

:,
20
00
00

:;
0
0

:,
02
00
00

: 101099 



=
















=



=
















= VUVU  

We checked that ,11 ii VGFU =  for each .101 ≤≤ i  

Step 4. With (3.2), we get the homomorphisms ,, ii VUH  i.e., a system 

of generators of ( ).,Hom NMS  Note that ,0 4411 ,, VUVU HH ==  thus, 

we have only 8 generators: 
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( ) ( );
2
2

0
1

01
00
01

20
311, 22 ggf +−=




−
−

=





















−

−





=

x
x

xxx
xy

H VU  

( ) .
0
0

1
0

01
00
01

20
2, 22 0=



=





















−

−





=

xxx
xy

H VU f  

In a similar way, we get 

( ) ( ) ( );, 312,1, 3333 ggff +−== VUVU HH 0  

( ) ( ) ;, 32,31, 5555 gfgf yHxH VUVU −==  

( ) ( ) ;,2 2,21, 6666 0== fgf VUVU HH  

( ) ( ) ;2, 22,1, 7777 gff == VUVU HH 0  

( ) ( ) ;, 22,21, 8888 gfgf yHxH VUVU −==  

( ) ( ) ;,2 2,31, 9999 0== fgf VUVU HH  

 ( ) ( ) .2, 32,1, 10101010 gff == VUVU HH 0  

We observe that these results coincide with those of Section 3 in [12]. In 
fact, using the notation of [12], we have ,, 6,1, 3322 φ−=φ−= VUVU HH  

,,,,, 5,2,7,3,64, 9988776655 φ=φ=φ=φ=φ−φ= VUVUVUVUVU HHHHyH
 and .8, 1010 φ=VUH  
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