TESTING FREENESS OVER HERMITE RINGS

VERÓNICA CIFUENTES and OSWALDO LEZAMA

Escuela de Matemáticas y Estadística UPTC, Tunja Colombia

Departamento de Matemáticas
Grupo de Álgebra Conmutativa Computacional-SAC²
Universidad Nacional de Colombia
Bogotá
Colombia
e-mail: jolezamas@unal.edu.co

Abstract

In this paper, we present some matrix and constructive results that check freeness for a given finitely generated projective S-module M of constant rank, where S is a Hermite commutative ring. In particular, we give a matrix characterization of PF rings (a commutative ring S is PF is every f.g projective S-module is free). In addition, following the ideas in [3], we will exhibit an easy procedure for computing the module $\operatorname{Hom}_S(M,N)$, where S is an arbitrary Noetherian commutative ring with some natural computational conditions.

1. Introduction

It is well known that, if S is a principal ideal domain and M is a finitely generated (f.g) projective S-module, then M is free; the same is $\underline{\text{true}}$, if S is a local ring. A less trivial situation is when $\underline{2010}$ Mathematics Subject Classification: Primary: 13C10; Secondary: 13B25, 13E15.

Keywords and phrases: free modules, syzygies, Hermite rings, commutative Noetherian rings, constructive algebra.

Received June 15, 2010

© 2010 Scientific Advances Publishers

 $S=K[x_1,\ldots,x_n]$, K is a field, but the famous Quillen-Suslin's theorem shows that any f.g projective module over S is also free (see [20] and [22]). However, if S is a Dedekind domain, then not any f.g projective module over S is free (see [6]). Thus, given a ring S and a concrete f.g projective module M, it is interesting to have a method for checking, if M is free. In this paper, we present some matrix and constructive results that checks freeness for a given finitely generated projective S-module M of constant rank, where S is a Hermite commutative ring (compare with [8], [9], [15] and [19]). A commutative ring S is S is S if each stably free module over S is free. Some well known examples of Hermite rings are semilocal rings and principal ideal domains; S is S is Hermite, if S is S and S is Hermite, if S and S is Hermite, if S is Hermite, if S is S is Hermite, if S is Hermite, if S is S is Hermite, if S is Hermite.

In addition, we will exhibit in the last section a procedure for computing the module $\operatorname{Hom}_S(M,N)$, where S is an SC commutative ring (see the Definition 7) and M, N are f.g modules over S. The Hom modules were computed in [12] for the special case when $S := R[x_1, \ldots, x_n]$, with R is a commutative Noetherian Gröbner soluble ring. Gröbner soluble rings are defined as follows (see [11]); we say that a ring S is Gröbner soluble (GS), if:

- (i) Given elements $a, a_1, \ldots, a_r \in S$, there exists a procedure to decide, if $a \in \langle a_1, \ldots, a_r \rangle$ and if it is, to compute $c_1, \ldots, c_r \in S$ such that $a = a_1c_1 + \cdots + a_rc_r$.
- (ii) Given $a_1, \ldots, a_r \in S$, there exists a procedure to find a set of generators for the S-module

$$Syz_S[a_1 ... a_r] := \{(c_1, ..., c_r) \in S^r | a_1c_1 + \cdots + a_rc_r = 0\}.$$

From now on, S represents an arbitrary commutative ring, $S[x_1, ..., x_n]$ is the polynomial ring over S in $n \ge 1$ variables; for $s, r \ge 1$, $M_{s \times r}(S)$ is the set of rectangular matrices of size $s \times r$, and $GL_r(S)$ is the general linear group of invertible matrices over S of size $r \times r$. S^s is the free S-module of rank s consisting of columns vectors of size $s \times 1$ with entries

in S. If $f_1, \ldots, f_r \in S^s$, then $Syz(f_1, \ldots, f_r) \coloneqq \{(b_1, \ldots, b_r) \in S^r | b_1 f_1 + \cdots + b_r f_r = 0\}$, and for $F \in M_{s \times r}(S)$, Syz(F) is the module of syzygies of the columns of F. For a matrix U, $\langle U \rangle$ represents the module generated by its columns. In general, we will use the habitual notation and terminology of matrix and constructive methods over commutative rings (see, for example, [6], [8], [9], [15]-[17]).

2. Main Result

We recall that a commutative ring S is Hermite (H) is every stably free S-module is free. The following theorem and the Corollaries 2 and 5 are the main results of the paper.

Theorem 1. Let S be a Hermite ring. Then,

(i) Let M be a finitely generated projective S-module of constant rank r with presentation $S^l \xrightarrow{F_1} S^s \xrightarrow{F_0} M \to 0$. M is free, if and only if there exists a matrix $U \in GL_s(S)$ such that

$$UF_1 = \begin{bmatrix} I_{s-r} & 0 \\ 0 & 0 \end{bmatrix}. \tag{2.1}$$

In such case, a basis of M is given by the last r columns of U^{-1} .

(ii) Let M be a direct summand of S^s and $F_0: S^s \to M$ be the canonical projection on M. M is free with rank(M) = r, if and only if there exists a matrix $P \in GL_s(S)$ such that

$$PF_0P^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & I_r \end{bmatrix}. \tag{2.2}$$

In such case, a basis of M is given by the last r columns of P^{-1} .

Proof. (i) \Rightarrow) Since M is free and has constant rank r, then M has a basis of r elements; moreover, since r coincides with the minimal number of generators of M, then $r \leq s$. Let $G_0: S^s \to S^r$ be the canonical

292

projection given by $G_0(\mathbf{e}_j) = \mathbf{0}$, if $1 \le j \le s - r$ and $G_0(\mathbf{e}_{s-r+i}) = \mathbf{e}_i$, if $1 \le i \le r$; note that the matrix of G_0 in the canonical bases is

$$G_0 = [0 \ I_r].$$

Let $H:M\to S^r$ be an isomorphism, then we have the following diagram with first row exact

$$S^{l} \xrightarrow{F_{1}} S^{s} \xrightarrow{F_{0}} M \longrightarrow 0$$

$$i_{S^{l}} \downarrow \qquad \qquad \downarrow U \qquad \qquad \downarrow H$$

$$S^{l} \xrightarrow{G_{1}} S^{s} \xrightarrow{G_{0}} S^{r} \longrightarrow 0$$

$$(2.3)$$

where U and G_1 are defined as follows: since M is projective, there exists $F'_0: M \to S^s$ such that $F_0F'_0=i_M$ and $S^s=\ker(F_0)\oplus F'_0(M)$; let $H(v_i)=\boldsymbol{e}_i, \ 1\leq i\leq r,$ then $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r\}$ is a basis of M. Let $F'_0(v_i)=\boldsymbol{z}_i,$ then $\{\boldsymbol{z}_1,\ldots,\boldsymbol{z}_r\}$ is a basis of $F'_0(M)$. Note that $\ker(F_0)$ is stably free of constant rank $s-r\leq l$. By the hypothesis, $\ker(F_0)$ has a basis $\{\boldsymbol{w}_1,\ldots,\boldsymbol{w}_{s-r}\}$ of size s-r, and then $\{\boldsymbol{w}_1,\ldots,\boldsymbol{w}_{s-r};\,\boldsymbol{z}_1,\ldots,\boldsymbol{z}_r\}$ is a basis for S^s . With this, we define U in the following way:

$$U(\boldsymbol{w}_j) = \boldsymbol{e}_j$$
, for $1 \le j \le s - r$,
 $U(\boldsymbol{z}_i) = \boldsymbol{e}_{s-r+i}$, for $1 \le i \le r$.

We observe that U is an isomorphism and moreover, $G_0U = HF_0$. We define $G_1 = UF_1$, thus the diagram (2.3) is commutative. We will prove that the second row of (2.3) is exact. By the construction, G_0 is surjective; $G_0UF_1 = HF_0F_1 = 0$, and then $Im(UF_1) \subseteq \ker(G_0)$. Moreover, $\ker(G_0) \subseteq Im(UF_1)$: in fact, let $x \in \ker(G_0)$, so x = U(z) and hence $G_0(U(z)) = 0 = HF_0(z)$, i.e., $F_0(z) = 0$ since H is injective; from this, we get that $z \in \ker(F_0) = Im(F_1)$, so $z = F_1(w)$ and $x = U(F_1(w))$, i.e., $x \in Im$

 (UF_1) . Thus, $\operatorname{Im}(G_1) = \operatorname{Im}(UF_1) = \ker(G_0)$ and hence the second row of (2.3) is exact. Finally, $\ker(G_0) = \langle \boldsymbol{e}_1, \dots, \boldsymbol{e}_{s-r} \rangle$, and then

$$UF_1 = \begin{bmatrix} I_{s-r} & 0 \\ 0 & 0 \end{bmatrix}.$$

 \Leftarrow) Now, we assume that there exists a matrix $U \in GL_s(S)$ that satisfies (2.1). As in the previous part, we consider again the canonical projection G_0 , so $\ker(G_0) = \operatorname{Im}(UF_1)$; we have the diagram

$$S^{s} \xrightarrow{F_{0}} M \longrightarrow 0$$

$$\downarrow U \qquad \qquad \downarrow H$$

$$S^{s} \xrightarrow{G_{0}} S^{r} \longrightarrow 0$$
(2.4)

where H is defined as follows: let $m \in M$, there exists $x \in S^s$ such that $F_0(x) = m$. We define $H(m) := G_0U(x)$; if $x' \in S^s$ is such that $F_0(x') = m$, then $x - x' \in \ker(F_0) = \operatorname{Im}(F_1)$, so $x - x' = F_1(z)$, with $z \in S^l$; from this, we get $U(x - x') = UF_1(z) \in \operatorname{Im}(UF_1) = \ker(G_0)$, so $G_0U(x) = G_0U(x')$, this means that H is well defined. Note that H is an S-homomorphism such that $HF_0 = G_0U$. From this, we get that H is surjective and hence $M \cong S^r \oplus N$, but since M has constant rank r, then $N_P = 0$ for each prime ideal of S, i.e., N = 0 and M is free.

Finally, we note that a basis of $F_0'(M) \cong M$ is $\mathbf{z}_i = U^{-1}(\mathbf{e}_{s-r+i})$, $1 \leq i \leq r$, i.e., the last r columns of U^{-1} .

(ii) \Rightarrow) Let M be free with rank r being a direct summand of S^s , then $r \leq s$ and $S^s = M' \oplus M$; we can repeat the reasoning of the first part of (i): let F_0 be the canonical projection on M and $H: M \to S^r$ be an isomorphism, let $\{\boldsymbol{z}_1, \ldots, \boldsymbol{z}_r\} \subset M$ such that $H(\boldsymbol{z}_i) = \boldsymbol{e}_i, 1 \leq i \leq r$, then

 $\{z_1, ..., z_r\}$ is a basis of M. Since S is a Hermite ring, M' is free, let $\{w_1, ..., w_{s-r}\}$ be a basis of M'. Then $\{w_1, ..., w_{s-r}; z_1, ..., z_r\}$ is a basis for S^s . With this, we define U as above, then U is an isomorphism and we get the following commutative diagram

$$S^{s} \xrightarrow{F_{0}} S^{s}$$

$$U \downarrow \qquad \qquad \downarrow U$$

$$S^{s} \xrightarrow{T_{0}} S^{s}$$

where T_0 is given by $T_0(\boldsymbol{e}_j) = \mathbf{0}$, if $1 \le j \le s - r$ and $T_0(\boldsymbol{e}_{s-r+i}) = \boldsymbol{e}_{s-r+i}$, if $1 \le i \le r$, i.e.,

$$T_0 = \begin{bmatrix} 0 & 0 \\ 0 & I_r \end{bmatrix}.$$

Thus, we set $P = U \in GL_s(S)$ and we get $PF_0P^{-1} = T_0$.

 \Leftarrow) We observe that $M = \operatorname{Im}(F_0) = \operatorname{Im}(F_0P^{-1}) = module generated$ by the last r columns of P^{-1} . This means that a basis for M is given by the last r columns of P^{-1} .

An interesting consequence of the previous theorem is the following matrix characterization of PF rings (a commutative ring S is PF is every f.g projective S-module is free, see [13]). In the proof, we will use a well known matrix interpretation of f.g projective modules: let S be a commutative ring and M be an S-module. Then, M is an f.g projective module, if and only if there exists an idempotent matrix F over S such that $M \cong \operatorname{Im}(F)$.

Corollary 2. Let S be a commutative ring. S is PF, if and only if for each $s \ge 1$ and every idempotent matrix $F \in M_s(S)$, there exist an invertible matrix $P \in GL_s(S)$ and some $0 \le r \le s$ such that

$$PFP^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & I_r \end{bmatrix}.$$

Proof. \Rightarrow) Let $F \in M_s(S)$ be an idempotent matrix and let M be the R-module generated by the columns of F. We have $S^s \xrightarrow{F} S^s$ with $M = \operatorname{Im}(F)$ and $F^2 = F$, so $S^s = M \oplus M'$, i.e., M is a finitely generated projective module, then by the hypothesis, M is free. Since S is H, we can apply the Theorem 1 (ii).

 \Leftarrow) Let M be a finitely generated projective R-module, so there exists $s \ge 1$ such that $S^s = M \oplus M'$; let $S^s \xrightarrow{F} S^s$ be the canonical projection on M, so F is idempotent and, by the hypothesis, we have the following commutative diagram

$$S^{s} \xrightarrow{F} S^{s}$$

$$\downarrow P$$

$$S^{s} \xrightarrow{D} S^{s}$$

with

$$D = \begin{bmatrix} 0 & 0 \\ 0 & I_r \end{bmatrix}.$$

Then, $M = \operatorname{Im}(F) \cong \operatorname{Im}(D) \cong S^r$.

3. Equivalent Matrices and Free Modules

According to (2.1), for the matrix presentation F_1 of the free S-module M, there exists $U \in GL_{\mathcal{S}}(S)$ such that $UF_1 = G_1$, with

$$G_1 = \begin{bmatrix} I_{s-r} & 0 \\ 0 & 0 \end{bmatrix},$$

i.e., F_1 is equivalent to G_1 . In a similar way, we have a similarity relationship in (2.2). From this arises, the problem about to have a procedure for computing the matrices U and P, or more general, to study the equivalence of matrices over commutative rings from a constructive

point of view. Next, we present some results in such direction, see the Corollary 5. We will exhibit also a procedure for computing the module $\operatorname{Hom}_S(M,N)$, where S is an SC commutative ring (see the Definition 7) and M, N are finitely generated modules over S. The Hom modules were computed in [12] for the special case when $S = R[x_1, \ldots, x_n]$, with R is a commutative Noetherian GS ring. Some ideas behind the results have been taken from [2], where similar problems have been considered for certain special class of computable Ore algebras.

We start with some beautiful results that involve Kronecker product of matrices.

Definition 3. Let S be a commutative ring and $E = [e_{ij}] \in M_{r \times s'}(S)$ be a matrix. col(E) is the column vector obtained concatenating the columns of E,

$$col(E) := (e_{11}, \ldots, e_{r1}; \ldots; e_{1s'}, \ldots, e_{rs'})^t \in S^{rs'}.$$

Proposition 4. Let S be a commutative ring. Then:

(i) If $E \in M_{r \times s'}(S)$, $U \in M_{s' \times s}(S)$, and $F \in M_{s \times l}(S)$ are matrices, then

$$col(EUF) = (F^t \otimes E)col(U).$$

(ii) Let $F \in M_{s \times l}(S)$, $G \in M_{s' \times l'}(S)$, $U \in M_{s' \times s}(S)$, and $V \in M_{l' \times l}(S)$. Then,

$$UF = GV, \ if \ and \ only \ if \ \big[I_{s'} \otimes F^t \quad G \otimes I_l\,\big] \begin{bmatrix} \operatorname{col}(U^t) \\ -\operatorname{col}(V) \end{bmatrix} = 0,$$

i.e.,

$$UF = GV$$
, if and only if $[\operatorname{col}(U^t) - \operatorname{col}(V)]^t \in \operatorname{Syz}[I_{s'} \otimes F^t \quad G \otimes I_l]$.

(iii) With the notation of (ii), let $\mathcal{P}_{F,G} := \{(U,V)|UF = GV\}$. Then $\mathcal{P}_{F,G}$ is an S-module and $\mathcal{P}_{F,G} \cong Syz[I_{s'} \otimes F^t \quad G \otimes I_l]$.

(iv) Let s' = s and l' = l. F and G are equivalent, if and only if there exists a vector $[\operatorname{col}(U^T) - \operatorname{col}(V)]^T \in \operatorname{Syz}[I_s \otimes F^T \ G \otimes I_l]$, with $U \in GL_s(S)$ and $V \in GL_l(S)$.

Proof. (i) This follows from a direct computation of product and Kronecker product of matrices:

$$\operatorname{col}(EUF) = \begin{bmatrix} \sum_{w=1}^{s} \sum_{z=1}^{s'} e_{1z}u_{zw}f_{w1} \\ \sum_{w=1}^{s} \sum_{z=1}^{s'} e_{rz}u_{zw}f_{w1} \\ \sum_{w=1}^{s} \sum_{z=1}^{s'} e_{1z}u_{zw}f_{w2} \\ \vdots \\ \sum_{w=1}^{s} \sum_{z=1}^{s'} e_{rz}u_{zw}f_{w2} \\ \vdots \\ \sum_{w=1}^{s} \sum_{z=1}^{s'} e_{1z}u_{zw}f_{wl} \\ \vdots \\ \sum_{w=1}^{s} \sum_{z=1}^{s'} e_{rz}u_{zw}f_{wl} \end{bmatrix};$$

$$(F^t \otimes E) \mathrm{col}(U) = \begin{bmatrix} f_{11}e_{11} & \cdots & f_{11}e_{1s'} & \cdots & f_{s1}e_{11} & \cdots & f_{s1}e_{1s'} \\ \vdots & & \vdots & & \vdots & & \vdots \\ f_{11}e_{r1} & \cdots & f_{11}e_{rs'} & \cdots & f_{s1}e_{r1} & \cdots & f_{s1}e_{rs'} \\ \vdots & & \vdots & & \vdots & & \vdots \\ f_{1l}e_{11} & \cdots & f_{1l}e_{1s'} & \cdots & f_{sl}e_{11} & \cdots & f_{sl}e_{1s'} \\ \vdots & & \vdots & & \vdots & & \vdots \\ f_{1l}e_{r1} & \cdots & f_{1l}e_{rs'} & \cdots & f_{sl}e_{r1} & \cdots & f_{sl}e_{rs'} \end{bmatrix} \begin{bmatrix} u_{11} \\ \vdots \\ u_{s'1} \\ \vdots \\ u_{1s} \\ \vdots \\ u_{s's} \end{bmatrix}$$

(ii) Note that

$$UF - GV = \begin{bmatrix} \sum_{z=1}^{s} u_{1z} f_{z1} - \sum_{w=1}^{l} g_{1w} v_{w1} & \cdots & \sum_{z=1}^{s} u_{1z} f_{zl} - \sum_{w=1}^{l'} g_{1w} v_{wl} \\ \vdots & & \vdots \\ \sum_{z=1}^{s} u_{s'z} f_{z1} - \sum_{w=1}^{l'} g_{s'w} v_{w1} & \cdots & \sum_{z=1}^{s} u_{s'z} f_{zl} - \sum_{w=1}^{l'} g_{s'w} v_{wl} \end{bmatrix},$$

and for
$$[I_{s'} \otimes F^t \quad G \otimes I_l] \begin{bmatrix} \operatorname{col}(U^t) \\ -\operatorname{col}(V) \end{bmatrix}$$
, we have

$$\begin{bmatrix} f_{11} & \cdots & f_{s1} & \cdots & 0 & \cdots & 0 & g_{11} & \cdots & 0 & \cdots & g_{1l'} & \cdots & 0 \\ \vdots & & \vdots & & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ f_{1l} & \cdots & f_{sl} & \cdots & 0 & \cdots & 0 & 0 & \cdots & g_{11} & \cdots & 0 & \cdots & g_{1l'} \\ \vdots & & \vdots & & \ddots & & \vdots & & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & \cdots & f_{11} & \cdots & f_{s1} & g_{s'1} & \cdots & 0 & \cdots & g_{s'l'} & \cdots & 0 \\ \vdots & & \vdots & & \vdots & & \vdots & \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & f_{1l} & \cdots & f_{sl} & 0 & \cdots & g_{s'1} & \cdots & 0 & \cdots & g_{s'l'} \end{bmatrix}^{u_{11}} \vdots \\ v_{l1} \vdots \\ v_{l2} \vdots \\ v_{l2} \vdots \\ v_{l1} \vdots \\ v_{l2} \vdots \\ v_{l1} \vdots \\ v_{l2} \vdots \\ v_{l1} \vdots \\ v_{l2} \vdots \\ v_{l3} \vdots \\ v_{l4} \vdots \\ v_{l$$

Thus,
$$\operatorname{col}((UF - GV)^t) = 0$$
, if and only if $\begin{bmatrix} I_{s'} \otimes F^t & G \otimes I_l \end{bmatrix} \begin{bmatrix} \operatorname{col}(U^t) \\ -\operatorname{col}(V) \end{bmatrix} = 0$,

$$\text{i.e., } U\!F = \!GV \text{, if and only if } \begin{bmatrix} I_{s'} \otimes F^t & G \otimes I_l \end{bmatrix} \begin{bmatrix} \operatorname{col}(U^t) \\ -\operatorname{col}(V) \end{bmatrix} = 0.$$

- (iii) This follows from (ii), if we define (U, V) + (U', V') := (U + U', V + V') and a.(U, V) := (aU, aV), with $a \in S$.
- (iv) This is a direct consequence of (ii) and the fact that a square matrix U over a commutative ring S of size $s \times s$ is invertible, if and only if its columns generate S^s .

From Proposition 4, we can complement the Theorem 1 with the following matrix constructive result.

Corollary 5. Let S be a Hermite ring and M be an S-module.

(i) Let M be a finitely generated projective S-module of constant rank r given by the finite presentation

$$S^l \xrightarrow{F_1} S^s \xrightarrow{F_0} M \to 0,$$

and let

$$G_1 = \begin{bmatrix} I_{s-r} & 0 \\ 0 & 0 \end{bmatrix}$$

of size $s \times l$. M is free, if and only if there exists $[\operatorname{col}(U^T) - \operatorname{col}(I_l)]^T \in \operatorname{Syz} [I_s \otimes F_1^T \ G_1 \otimes I_l]$, with $U \in \operatorname{GL}_s(S)$. In such case, a basis of M is given by the last r columns of U^{-1} .

(ii) Let M be a direct summand of S^s and $F_0: S^s \to M \subseteq S^s$ be the canonical projection on M. Let

$$T_0 = \begin{bmatrix} 0 & 0 \\ 0 & I_r \end{bmatrix}$$

of size $s \times s$. Then, M is free with $\dim(M) = r$, if and only if there exists $[\operatorname{col}(P^T) - \operatorname{col}(P)]^T \in \operatorname{Syz}[I_s \otimes F_0^T \ T_0 \otimes I_s]$, with $P \in \operatorname{GL}_s(S)$. In such case, a basis of M is given by the last r columns of P^{-1} .

Another interesting result valid for arbitrary commutative rings is the following proposition that gives a procedure for computing the Hom modules in a more simple and general way (compare with [12]).

Proposition 6. Let S be a commutative ring, M, M' modules over S and let

$$S^{l} \xrightarrow{F_{1}} S^{s} \xrightarrow{F_{0}} M \to 0,$$

$$S^{l'} \xrightarrow{G_{1}} S^{s'} \xrightarrow{G_{0}} M' \to 0$$

be finite presentations of M and M'. With the notation of Proposition 4, if $H \in \operatorname{Hom}_S(M, M')$, then there exists $(U, V) \in \mathcal{P}_{F_1, G_1}$ such that the following diagram is commutative:

$$S^{l} \xrightarrow{F_{1}} S^{s} \xrightarrow{F_{0}} M \longrightarrow 0$$

$$V \downarrow \qquad \qquad \downarrow U \qquad \qquad \downarrow H$$

$$S^{l'} \xrightarrow{G_{1}} S^{s'} \xrightarrow{G_{0}} M' \longrightarrow 0. \tag{3.1}$$

Conversely, if $(U, V) \in \mathcal{P}_{F_1, G_1}$, then there exists $H \in \text{Hom}_S(M, M')$ such that the previous diagram is commutative.

Additionally, if $\ker(G_1)$ is finitely generated, then there exists a matrix G_2 of size $l' \times t'$ (for some t') such that

$$\operatorname{Hom}_{S}(M, M') \cong \mathcal{P}_{F_{1}, G_{1}}/\mathcal{K},$$

where

$$\mathcal{K} := \{(U, V)|U = G_1Z_1, V = Z_1F_1 + G_2Z_2, with Z_1 \in M_{l'\times s}(S), Z_2 \in M_{t'\times l}(S)\}.$$

Proof. The proof of the first part is classical and can be found also in [21]. Let $H \in \operatorname{Hom}_S(M, M')$, since S^s is projective, there exists $U : S^s \to S^{s'}$ such that $HF_0 = G_0U$; moreover, $G_0UF_1 = HF_0F_1 = 0$, so $\operatorname{Im}(UF_1) \subseteq \ker(G_0) = \operatorname{Im}(G_1)$. Then, since S^l is projective, there exists $V : S^l \to S^{l'}$ such that $UF_1 = G_1V$. This shows that the diagram (3.1) is commutative.

Conversely, let $(U,V) \in \mathcal{P}_{F_1,G_1}$, i.e., $UF_1 = G_1V$; let $x \in M$, then there exists $y \in S^s$ such that $F_0(y) = x$, so we define $H:M \to M'$, $H(x) := G_0U(y)$. Note that H is well defined: in fact, if $F_0(y') = x = F_0(y)$, then $y' - y \in \ker(F_0) = \operatorname{Im}(F_1)$ and there exists $z \in S^l$ such that $F_1(z) = y' - y$, so $G_0U(y' - y) = G_0U(F_1(z)) = G_0G_1V(z) = 0$ and hence $G_0U(y) = G_0U(y')$. Moreover, H is an homomorphism and satisfies $HF_0 = G_0U$, i.e., the diagram (3.1) is commutative.

Now, we will prove the second part. We define

$$\mathcal{P}_{F_1,G_1} \xrightarrow{\alpha} \operatorname{Hom}_S(M, M'),$$

$$(U, V) \mapsto H_{U,V},$$

where $H_{U,V}$ is defined as above, i.e.,

$$H_{U,V}(x) := G_0 U(y), \tag{3.2}$$

with $F_0(y)=x, x\in M$, and $y\in S^s$. It is easy to check that α is an S-homomorphism, moreover, as we saw, α is surjective. Let $\mathcal{K}:=\ker(\alpha)$ and $(U,V)\in\mathcal{K}$, then $H_{U,V}=0$, and we have the following commutative diagram

$$S^{l} \xrightarrow{F_{1}} S^{s} \xrightarrow{F_{0}} M \longrightarrow 0$$

$$V \downarrow \qquad \qquad \downarrow U \qquad \qquad \downarrow H_{U,V} = 0$$

$$S^{l'} \xrightarrow{G_{1}} S^{s'} \xrightarrow{G_{0}} M' \longrightarrow 0$$

note that $\operatorname{Im}(U) \subseteq \ker(G_0) = \operatorname{Im}(G_1)$, hence there exists an homomorphism $Z_1: S^s \to S^{l'}$ such that $G_1Z_1 = U$. By the hypothesis, there exists an homomorphism $S^{t'} \xrightarrow{G_2} S^{l'}$ such that $G_2 := \operatorname{Syz}(G_1) = \ker(G_1)$, where t' is the size of some set of generators of $\ker(G_1)$. We observe that $\operatorname{Im}(V - Z_1F_1) \subseteq \operatorname{Im}(G_2)$: in fact, for $w \in S^l$, we have $G_1(V - Z_1F_1)(w) = G_1V(w) - G_1Z_1F_1(w) = UF_1(w) - UF_1(w) = 0$, thus, $(V - Z_1F_1)(w) \in \ker(G_1) = \operatorname{Im}(G_2)$ and there exists $w' \in S^l$ such that $G_2(w') = (V - Z_1F_1)(w)$. So, there exists an homomorphism $Z_2: S^l \to S^{l'}$ such that $G_2Z_2 = V - Z_1F_1$, i.e., $V = Z_1F_1 + G_2Z_2$.

Conversely, let $(U,V) \in \mathcal{P}_{F_1,G_1}$ such that $U=G_1Z_1$ and $V=Z_1F_1+G_2Z_2$ for some matrices $Z_1 \in M_{l'\times s}(S), Z_2 \in M_{t'\times l}(S)$, then $H_{U,V}(x)=G_0U(y)=G_0G_1Z_z(y)=0$, with $x=F_0(y)$. This means that $H_{U,V}=0$, i.e., $(U,V) \in \ker(\alpha)$ (note that the condition on V was not used).

According to the previous proposition, given $H \in \operatorname{Hom}_S(M, M')$, the matrices U, V for H in general are not unique, however, by Proposition 4 (ii), any generator of $[I_{s'} \otimes F_1^t \ G_1 \otimes I_l]$ gives a such pair of matrices computed by the following algorithm:

Computation of matrices U and V

Input: Matrices F_1 and G_1 as in (3.1).

Output: Matrices U and V as in (3.1) given by $col(U^t)$ and col(V).

Initialization: Define the matrix

$$K := [I_{s'} \otimes F_1^t \quad G_1 \otimes I_l].$$

Compute Syz(K).

Choose any generator of Syz(K) presented as $[\operatorname{col}(U^t) - \operatorname{col}(V)]^t$, where $\operatorname{col}(U^t)$ is a column vector conformed by the first ss' entries of the chosen generator and $\operatorname{col}(V)$ is a column vector conformed by the next l'l entries.

Conform U and V with the entries of $col(U^t)$ and col(V).

The previous algorithm is effective, if we know how to compute syzygies of matrices over S, this holds, for example, if $S = R[x_1, ..., x_n]$, where R is a Noetherian Gröbner soluble ring, see [5] and [12].

Definition 7. A commutative ring S is syzygy computable (SC), if there exists an effective procedure for computing Syz(F) for any matrix F over S.

Corollary 8. Let S be a Noetherian SC commutative ring. If M, M' are finitely generated S-modules, then $\operatorname{Hom}_S(M, M')$ is effective computable.

Proof. Finite presentations for M and M' as in the Proposition 6, and a finite set of generators of $Syz[I_{s'} \otimes F_1^t \ G_1 \otimes I_l]$ can be effective computed since S is a Noetherian SC ring:

$$Syz[I_{s'} \otimes F_1^t \ G_1 \otimes I_t] = \langle [col(U_1^t) \ -col(V_1)]^t, ..., [col(U_t^t) \ -col(V_t)]^t \rangle;$$

from the above algorithm and the proof of Proposition 6, we get that

$$\operatorname{Hom}_{S}(M, M') = \langle H_{U_{1}, V_{1}}, \dots, H_{U_{t}, V_{t}} \rangle. \qquad \Box$$

Example 9. We will repeat the example presented in the Section 3 of [12], but using the previous algorithm. Let $S := \mathbb{Z}_{10}[x, y]$, we want to compute $\operatorname{Hom}_S(M, N)$, where $M = \langle f_1, f_2 \rangle \subseteq S^2$ and $N = \langle g_1, g_2, g_3 \rangle \subseteq S^2$, with $f_1 = (3x^2y + 3x, xy - 2y)$, $f_2 = (7xy^2 + y, y^2 - 4x)$, $g_1 = (0, x)$, $g_2 = (y, x)$, and $g_3 = (2x, x)$. We choose the monomial order POTREV on $\operatorname{Mon}(S^2)$ and deglex on $\operatorname{Mon}(S)$, with x > y (see [11]).

Step 1. We compute finite presentations for M and N:

$$A \xrightarrow{F_1} A^2 \xrightarrow{F_0} M$$
, $A^2 \xrightarrow{G_1} A^3 \xrightarrow{G_0} N$.

with

$$F_0 = \begin{bmatrix} 3x^2y + 3x & 7xy^2 + y \\ xy - 2y & y^2 - 4x \end{bmatrix}, \quad F_1 = Syz(F_0) = \begin{bmatrix} 5y \\ 5x \end{bmatrix},$$

$$G_0 = \begin{bmatrix} 0 & y & 2x \\ x & x & x \end{bmatrix}, \quad G_1 = Syz(G_0) = \begin{bmatrix} 5 & 2x + 9y \\ 0 & 8x \\ 5 & y \end{bmatrix}.$$

Step 2. With the notation of the above algorithm, we have s = 2, l = 1, s' = 3, l' = 2, and we must compute Syz(K), with

$$K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 5 & 2x + 9y \\ 0 & 8x \\ 5 & y \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

i.e.,

$$K = \begin{bmatrix} 5y & 5x & 0 & 0 & 0 & 0 & 5 & 2x + 9y \\ 0 & 0 & 5y & 5x & 0 & 0 & 0 & 8x \\ 0 & 0 & 0 & 0 & 5y & 5x & 5 & y \end{bmatrix}.$$

With the procedure described in [12], we get a system of generators of Syz(K):

Step 3. From the above generators, we obtain the pair of matrices (U_i, V_i) , $1 \le i \le 10$:

We checked that $U_iF_1 = G_1V_i$, for each $1 \le i \le 10$.

Step 4. With (3.2), we get the homomorphisms H_{U_i,V_i} , i.e., a system of generators of $\operatorname{Hom}_S(M,N)$. Note that $H_{U_1,V_1}=0=H_{U_4,V_4}$, thus, we have only 8 generators:

$$H_{U_2, V_2}(\mathbf{f}_1) = \begin{bmatrix} 0 & y & 2x \\ x & x & x \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2x \\ -2x \end{bmatrix} = -(\mathbf{g}_1 + \mathbf{g}_3);$$

$$H_{U_2, V_2}(\mathbf{f}_2) = \begin{bmatrix} 0 & y & 2x \\ x & x & x \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \mathbf{0}.$$

In a similar way, we get

$$\begin{split} &H_{U_3,\ V_3}(f_1) = \mathbf{0},\ H_{U_3,\ V_3}(f_2) = -(\mathbf{g}_1 + \mathbf{g}_3);\\ &H_{U_5,\ V_5}(f_1) = x\mathbf{g}_3,\ H_{U_5,\ V_5}(f_2) = -y\mathbf{g}_3;\\ &H_{U_6,\ V_6}(f_1) = 2\mathbf{g}_2,\ H_{U_6,\ V_6}(f_2) = \mathbf{0};\\ &H_{U_7,\ V_7}(f_1) = \mathbf{0},\ H_{U_7,\ V_7}(f_2) = 2\mathbf{g}_2;\\ &H_{U_8,\ V_8}(f_1) = x\mathbf{g}_2,\ H_{U_8,\ V_8}(f_2) = -y\mathbf{g}_2;\\ &H_{U_9,\ V_9}(f_1) = 2\mathbf{g}_3,\ H_{U_9,\ V_9}(f_2) = \mathbf{0};\\ &H_{U_{10},\ V_{10}}(f_1) = \mathbf{0},\ H_{U_{10},\ V_{10}}(f_2) = 2\mathbf{g}_3. \end{split}$$

We observe that these results coincide with those of Section 3 in [12]. In fact, using the notation of [12], we have $H_{U_2,\ V_2}=-\phi_1,\ H_{U_3,\ V_3}=-\phi_6,$ $H_{U_5,\ V_5}=\phi_4-y\phi_6,\ H_{U_6,\ V_6}=\phi_3,\ H_{U_7,\ V_7}=\phi_7,\ H_{U_8,\ V_8}=\phi_2,\ H_{U_9,\ V_9}=\phi_5,$ and $H_{U_{10},\ V_{10}}=\phi_8.$

References

- [1] F. Chyzak, A. Quadrat and D. Robertz, Effective algorithms for parametrizing linear control systems over Ore algebras, AAECC 16 (2005), 319-376.
- [2] T. Cluzeau and A. Quadrat, Factoring and decomposing a class of linear functional systems, Lin. Alg. and its Appl. 428 (2008), 324-381.
- [3] A. Fabiańska and A. Quadrat, Applications of the Quillen-Suslin theorem to multirankal systems theory, INRIA, Rapport de Recherche n° 6126 (2007).
- [4] J. Gago-Vargas, On Suslin's Stability Theorem for $R[x_1, \ldots, x_m]$, Ring Theory and Algebraic Geometry, Lecture Notes in Pure and Applied Mathematics, Vol. 221, Marcel Dekker, New York, (2001), 203-210.

306 VERÓNICA CIFUENTES and OSWALDO LEZAMA

- [5] G. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra, 2nd edition, Springer, 2007.
- [6] T. Y. Lam, Serre's Problem on Projective Modules, Springer Monographs in Mathematics, Springer, 2006.
- [7] S. Lang, Algebra, Springer, 2004.
- [8] R. C. Laubenbacher and C. Woodburn, An algorithm for the Quillen-Suslin theorem for monoid rings, J. Pure Appl. Algebra 117-118 (1997), 395-429.
- [9] R. C. Laubenbacher and K. Schlauch, An algorithm for the Quillen-Suslin theorem for quotients of polynomial rings by monomial ideals, J. Symb. Comp. 30 (2000), 555-571.
- [10] R. C. Laubenbacher and C. Woodburn, A new algorithm for the Quillen-Suslin theorem, Contributions to Algebra and Geometry 41 (2000), 23-31.
- [11] O. Lezama, Gröbner bases for modules over Noetherian polynomial commutative rings, Georgian Mathematical Journal 15 (2008), 121-137.
- [12] O. Lezama, Some applications of Gröbner bases in homological algebra, São Paulo Journal of Mathematical Sciences 3(1) (2009), 25-59.
- [13] O. Lezama et al., Quillen-Suslin rings, Extracta Mathematicae 24(1) (2009).
- [14] A. Logar and B. Sturmfels, Algorithms for the Quillen-Suslin theorem, J. Algebra 145(1) (1992).
- [15] H. Lombardi, Le contenu constructif d'un principe local-global avec une application à la structure d'un module projectif de type fini, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 1997.
- [16] H. Lombardi and Quitté, Algèbre Commutative, Méthodes Constructives, Modules Projectifs de Type Fini, 2009:

http://hlombardi.free.fr/

- [17] B. MacDonald, Linear Algebra over Commutative Rings, Marcel Dekker, 1984.
- [18] H. Park and C. Woodburn, An algorithmic proof of Suslin's stability theorem for polynomial rings, J. Algebra 178 (1995), 277-298.
- [19] A. Quadrat and D. Robertz, Computation of bases of free modules over the Weyl algebras, Journal of Symbolic Computation (2007), doi:10.1016/j.jsc.2007.06.005.
- [20] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
- [21] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, 1979.
- [22] A. A. Suslin, Projective modules over polynomial rings are free, Soviet Math. Dokl. 17 (1976), 1160-1164.