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Abstract

In this paper, we present some matrix and constructive results that check
freeness for a given finitely generated projective S-module M of constant rank,
where S is a Hermite commutative ring. In particular, we give a matrix
characterization of PF rings (a commutative ring S is PF is every f.g projective
S-module is free). In addition, following the ideas in [3], we will exhibit an easy

procedure for computing the module Homg(M, N), where S is an arbitrary

Noetherian commutative ring with some natural computational conditions.
1. Introduction

It is well known that, if S is a principal ideal domain and M is a
finitely generated (f.g) projective S-module, then M is free; the same is

true, if S is a local ring. A less trivial situation is when
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S = K[xy, ..., x, ], Kis a field, but the famous Quillen-Suslin’s theorem

shows that any f.g projective module over S is also free (see [20] and [22]).
However, if S is a Dedekind domain, then not any f.g projective module
over S is free (see [6]). Thus, given a ring S and a concrete f.g projective
module M, it is interesting to have a method for checking, if M is free. In
this paper, we present some matrix and constructive results that checks
freeness for a given finitely generated projective S-module M of constant
rank, where S is a Hermite commutative ring (compare with [8], [9], [15]
and [19]). A commutative ring S is Hermite, if each stably free module
over S is free. Some well known examples of Hermite rings are semilocal

rings and principal ideal domains; R[xq, ..., x,, | is Hermite, if R a PID.
In addition, we will exhibit in the last section a procedure for
computing the module Homg(M, N), where S is an SC commutative

ring (see the Definition 7) and M, N are f.g modules over S. The
Hom modules were computed in [12] for the special case when

S := R[xy, ..., x, ], with R is a commutative Noetherian Grébner soluble

ring. Grébner soluble rings are defined as follows (see [11]); we say that a

ring S is Grobner soluble (GS), if:

(1) Given elements a, aq, ..., a, € S, there exists a procedure to
decide, if a e< aq, ..., a, > and if it is, to compute ¢y, ..., ¢, € S such

that a = ajc; + -+ + q,¢,.
(1) Given aq, ..., a, € S, there exists a procedure to find a set of
generators for the S-module
Syzgla; ...a, ] = {(c1, ..., ¢,) € S"|age1 + -+ + a,c, = 0}.

From now on, S represents an arbitrary commutative ring, S[xq, ..., x,, |
is the polynomial ring over S in n > 1 variables; for s, r > 1, M,,(S) is

the set of rectangular matrices of size s xr, and GL,(S) is the general

linear group of invertible matrices over S of size r xr. S° is the free

S-module of rank s consisting of columns vectors of size s x 1 with entries
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in S. If fi, ..., f, € S, then Syz(f,.... f,):={(by,.... b, ) e S"|byfy +-- +
b.f, =0}, and for F € M, (S), Syz(F) is the module of syzygies of the
columns of F. For a matrix U, (U) represents the module generated by its

columns. In general, we will use the habitual notation and terminology of
matrix and constructive methods over commutative rings (see, for
example, [6], [8], [9], [15]-[17]).

2. Main Result

We recall that a commutative ring S is Hermite (H) is every stably
free S-module is free. The following theorem and the Corollaries 2 and 5

are the main results of the paper.

Theorem 1. Let S be a Hermite ring. Then,

(1) Let M be a finitely generated projective S-module of constant rank r

with presentation St i ,gs Bo s 5 0.Mis free, if and only
if there exists a matrix U € GL4(S) such that

I.. 0
UF, :[ sar 0}' 2.1)

In such case, a basis of M is given by the last r columns of Ul

(i) Let M be a direct summand of S° and Fy :S° — M be the
canonical projection on M. M is free with rank(M) = r, if and only if there

exists a matrix P € GL4(S) such that

PF P! :{0 0] (2.2)
0 I,

In such case, a basis of M is given by the last r columns of P

Proof. (i) = ) Since M is free and has constant rank r, then M has a

basis of r elements; moreover, since r coincides with the minimal number

of generators of M, then r <s. Let Gy :S® — S” be the canonical
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projection given by Gy(e;) =0, if 1< j<s-r and Go(es_,.;) = ¢;, if

1 < i < r; note that the matrix of Gy in the canonical bases is
Gy =1[0 I,].

Let H: M - S be an isomorphism, then we have the following

diagram with first row exact

St 9 2 M ——0
o o |
~[ C; 1 ] G{] U a
b! »5 b —— 0 (2'3)

where U and G; are defined as follows: since M is projective, there exists
Fj : M —» S® such that FyFj =iy and S°® = ker(Fy)® Fj(M); let
H(v;)=e;,1<i<r, then {v;, ..., v} is a basis of M. Let Fj(v;) = z;,
then {z;, ..., 2, } is a basis of F;j(M). Note that ker(F,) is stably free of
constant rank s-r <[ By the hypothesis, ker(F;) has a basis
{wy, ..., ws_,} of size s—r, and then {wy, ..., ws_,; 21, ..., 2,} is a
basis for S°. With this, we define U in the following way:
Uw;j) =ej, for1<j<s-r,

U(z;)=eg_,,, for 1 <i<r.

We observe that U is an isomorphism and moreover, GoU = HF,. We
define G; = UFj, thus the diagram (2.3) is commutative. We will prove
that the second row of (2.3) is exact. By the construction, G is surjective;
GoUF, = HF,F; = 0, and then Im(UF; ) < ker(G,). Moreover, ker(G )
c Im(UF, ): in fact, let x € ker(Gy), so x = U(z) and hence Gy(U(z)) =
0 = HFy(z), i.e., Fy(z) = 0 since H is injective; from this, we get that
z e ker(Fy) = Im(F,), so z = Fj(w) and x = U(F;(w)), e, x € Im
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(UF;). Thus, Im(G;) = Im(UF; ) = ker(Gy) and hence the second row of
(2.3) is exact. Finally, ker(Gy) = (ey, ..., e;_,), and then

I._,. 0
UF]_ =|: 86r 0:|

<) Now, we assume that there exists a matrix U € GL,(S) that

satisfies (2.1). As in the previous part, we consider again the canonical

projection Gy, so ker(Gy) = Im(UF; ); we have the diagram

5 Fo

0

S* M
o |
gs S0, gr 0 (2.4)

where H is defined as follows: let m € M, there exists x € S° such that
Fy(x) =m. We define H(m):=GyU(x); if x'eS°® is such that
Fy(x') = m, then x -x' e ker(Fy)=1Im(F;), so x—-x' = Fj(z), with
z e 8'; from this, we get U(x — x') = UF;(z) € Im(UF,) = ker(Gy), so
GoU(x) = GoU(x'), this means that H is well defined. Note that H is an
S-homomorphism such that HF, = GoU. From this, we get that H is

surjective and hence M = S” @ N, but since M has constant rank r, then

Np = 0 for each prime ideal of S, i.e., N = 0 and M is free.

Finally, we note that a basis of F§(M)= M is z; = U (es_,.;),

1 <i<r, ie., thelast r columns of UL

(ii) =) Let M be free with rank r being a direct summand of S*, then
r <s and S® = M’ ® M; we can repeat the reasoning of the first part of

(): let F, be the canonical projection on M and H : M — S” be an

isomorphism, let {2, ..., 2,} ¢ M such that H(z;) =e;,1 <i <r, then
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{21, ..., 2, } is a basis of M. Since S is a Hermite ring, M’ is free, let

{w, ..., ws_,} be a basis of M'. Then {wy, ..., wy_,; 21, ..., 2, } is a

basis for S*. With this, we define U as above, then U is an isomorphism

and we get the following commutative diagram

S‘ &5 Fo 5 8§

a lv

gs _To gs

where T} is given by Ty(ej) =0, if 1< j<s—r and To(es ;)= €5,

00
TO{ }
01,

Thus, we set P = U e GL4(S) and we get PF,P™1 = Tj,.

ifl1<i<r, ie.,

<) We observe that M = Im(F,) = Im(Fy,P ') = module generated

by the last r columns of P71, This means that a basis for M is given by

the last r columns of P, O

An interesting consequence of the previous theorem is the following
matrix characterization of PF rings (a commutative ring S is PF is every
f.g projective S-module is free, see [13]). In the proof, we will use a well
known matrix interpretation of f.g projective modules: let S be a
commutative ring and M be an S-module. Then, M is an f.g projective
module, if and only if there exists an idempotent matrix F over S such
that M = Im(F).

Corollary 2. Let S be a commutative ring. S is PF, if and only if for
each s >1 and every idempotent matrix F e M,(S), there exist an

invertible matrix P € GL4(S) and some 0 < r < s such that

PFP7! = 00
01,]
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Proof. =) Let F € M,(S) be an idempotent matrix and let M be the

R-module generated by the columns of F. We have S°* — £ S5 with

M =Im(F) and F2=F, so S*=M®M', ie, M is a finitely

generated projective module, then by the hypothesis, M is free. Since S is
H, we can apply the Theorem 1 (i1).

<) Let M be a finitely generated projective R-module, so there exists

s>1 such that S° = M ® M’ let S°—2% 58° be the canonical

projection on M, so F is idempotent and, by the hypothesis, we have the

following commutative diagram

5‘1 S F ]

r| |7

gs _D_, gs
with
1))
Then, M = Im(F) = Im(D) = S 0

3. Equivalent Matrices and Free Modules

According to (2.1), for the matrix presentation F; of the free
S-module M, there exists U € GL4(S) such that UF} = Gy, with

G - I,_, 0
Lo 0)’
le., F] is equivalent to G;. In a similar way, we have a similarity

relationship in (2.2). From this arises, the problem about to have a
procedure for computing the matrices U and P, or more general, to study

the equivalence of matrices over commutative rings from a constructive
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point of view. Next, we present some results in such direction, see the
Corollary 5. We will exhibit also a procedure for computing the module

Homg(M, N), where S is an SC commutative ring (see the Definition 7)

and M, N are finitely generated modules over S. The Hom modules were

computed in [12] for the special case when S = R[xy, ..., x,, |, with Ris a

commutative Noetherian GS ring. Some ideas behind the results have
been taken from [2], where similar problems have been considered for

certain special class of computable Ore algebras.

We start with some beautiful results that involve Kronecker product

of matrices.

Definition 3. Let S be a commutative ring and E = [e;;] € M, ¢(S)
be a matrix. col(E) is the column vector obtained concatenating the

columns of E,
t rs'
COL(E) := (€115 vvs €41} -} Clg's --rs €pg ) € 8™,

Proposition 4. Let S be a commutative ring. Then:

Q) If Ee M.¢(S),U e My,,(S), and F € My ;(S) are matrices,
then

col (EUF) = (F' ® E)col(U).
(ii) Let F e My (S),G e Mg, y(S),U € My, (S), and V e My (S).
Then,

t
UF =GV, ifand onlyif [Iy ® F* G 1,]| WU )| _ g,
- col(V)

l.e.,
UF = GV, if and only if [col(U') —col(V)] e Syz[Iy ® F! G ® I;].
(iii) With the notation of (i), let Pp g = {(U, V)|UF = GV}. Then

Pr.g is an S-module and Pr g = Syz[Iy ® F' G ® I;].
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(iv) Let s' = s and I' = 1. F and G are equivalent, if and only if there
exists a vector [col(UT) —col(V)]! e Syz[I, ® FT G ®I,], with U e
GL,(S) and V e GL)(S).

Proof. (i) This follows from a direct computation of product and

Kronecker product of matrices:

- s s -
Z _ Z _ elzuzwfwl
w=1 z=1

Zs Zs’. f
e, u
w=l so1 TRYEW wl
s s'
E _ E _ elzuzwwa
w=1 2—1

col (EUF) = ;
S S
Zw lzz 1 zuzwfw.‘z
S S
Zw 122 1elz zwfwl
S S
Zw 122 1erzuzwfwl_
[fenn - few o faenn v faews | [t ]
fllerl fllers’ fslerl fslers’ Ug1
(F!' ® E)col(U) =] : : : :
fuein - fuews o faenn o faes || W
Lfuen - fuers v faer o fsiers ] [Ugts ]

(1) Note that

s U s U
Z _ ulzle - Z 81wl Z _ ulzle - Z ., 81wlwl
z=1 . w=1 z=1 . w=1

UF -GV = : : )

s U s 4
Z us'zle - z 8swlwl Z us'zle - Z 8s'wlwl
z=1 w=1 z=1 w=1

col(U?)

—col(V)

and for [Iy ® F' G®Il]{ },Wehave
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Uil
Uis
(fi1 = fa = 0 -« 0 g - 0 gy 07
: : : : : . : : - : Us1
fu - fg - 0 0 0 g 0 gy
: - : : - : Us's
—U11
0 0 fi.l fsl gs,l 0 gS'l' 0 .
: : : : : - : : - : o
_O 0 fll fsl 0 gs,l 0 gs,l,_ .
—bu
L=V |

t : . t col(U")
Thus, col (UF -GV)" )=0, ifand only if [Iy ® F* G® I;] 1) =0,
—co

t
i, UF =GV, ifandonlyif [I, ® F Go 1] )| g
—col (V)
(iii) This follows from (i), if we define (U, V)+ (U, V') = (U + U,
V+V')and a.(U, V) := (aU, aV), with a € S.

(iv) This is a direct consequence of (i) and the fact that a square

matrix U over a commutative ring S of size s x s is invertible, if and only

if its columns generate S°. 0

From Proposition 4, we can complement the Theorem 1 with the

following matrix constructive result.
Corollary 5. Let S be a Hermite ring and M be an S-module.

(1) Let M be a finitely generated projective S-module of constant rank r

given by the finite presentation

st e om0

and let
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Se

0 0
of size sxI. M is free, if and only if there exists
[col(UT) —col(I))]F € Syz [I, ® K G, ®I;], with U € GL,(S). In
such case, a basis of M is given by the last r columns of Ul

(1) Let M be a direct summand of S° and Fy : S° — M < S°® be the

canonical projection on M. Let

0 0
T,y =
0 I,

of size s x s. Then, M is free with dim(M) = r, if and only if there exists
[col(PT) —col(P)]F e Syz[I, ® F T, ®1,], with P eGLy(S). In
such case, a basis of M is given by the last r columns of P

Another interesting result valid for arbitrary commutative rings is
the following proposition that gives a procedure for computing the Hom
modules in a more simple and general way (compare with [12]).

Proposition 6. Let S be a commutative ring, M, M' modules over S

and let

st s o s

sl G ,g9 G ,pm 50

be finite presentations of M and M'. With the notation of Proposition 4, if
H e Homg(M, M'), then there exists (U, V)e Pp g, such that the

following diagram is commutative:

SI Iy S8 Fo M —— 0
174 Jv l U l H
S!af G S.‘;! Go ﬂj” —_— [} (3 1)



300 VERONICA CIFUENTES and OSWALDO LEZAMA
Conversely, if (U, V) € P, ,, then there exists H € Homg(M, M') such
that the previous diagram is commutative.

Additionally, if ker(Gy) is finitely generated, then there exists a
matrix Gg of size I' xt' (for some t') such that

HomS(M, M') = PFl,Gl/IC’

where

K =AU, V)|U = GZ,, V = Z\F; + GoZy, with Z; € My, 4(S), Zy € My,;(S)}.
Proof. The proof of the first part is classical and can be found also in

[21]. Let H € Homg(M, M’), since S° is projective, there exists U : S°

— 8% such that HF, = GyU; moreover, GyUF, = HFyF; =0, so

Im(UF, ) c ker(Gy) = Im(G; ). Then, since S’ is projective, there exists

V : 8" - 8% such that UF; = G,V. This shows that the diagram (3.1) is

commutative.
Conversely, let (U, V) € Pp g, i-e, UF; = G|V; let x € M, then

there exists y € S° such that Fy(y)==x, so we define H: M — M,
H(x):=GyU(y). Note that H is well defined: in fact, if Fy(y')=x =

Fy(y), then y' —y e ker(Fy)=Im(F;) and there exists z e St such
that Fy(z) = y' -y, so GoU(y' —y) = GoU(F;(2)) = GoG;V(z) = 0 and
hence GoU(y) = GoU(y'). Moreover, H is an homomorphism and satisfies

HF, = GyU, i.e., the diagram (3.1) is commutative.
Now, we will prove the second part. We define
Pr,¢, — > Homg(M, M'),
(U, V)= Hyy,

where Hp y is defined as above, i.e.,
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Hy y(x) = GoU(y), (3.2)

with Fy(y) = x,x € M, and y € S®. It is easy to check that o is an
S-homomorphism, moreover, as we saw, o is surjective. Let K := ker(a)

and (U, V) € K, then Hy y = 0, and we have the following commutative

diagram
g g o,y 0
VJ’ l( J{H::‘r:(l
¥ G, g G0, 0

note that Im(U)c ker(Gy)=1Im(G;), hence there exists an
homomorphism Z; : S° — S” such that G1Z; = U. By the hypothesis,

there exists an homomorphism S* — %2 8% such that Gy = Syz(Gy)

= ker(G; ), where t' is the size of some set of generators of ker(G).
We observe that Im(V — Z;F, ) < Im(Gs ): in fact, for w € S', we have
G(V - Z1Fy) (w) = GiV(w) - G1Z1F,(w) = UF;(w) — UF;(w) = 0, thus,
(V- Z,F)(w) € ker(G;) = Im(Gy ) and there exists w' € 8! such that
Gy(w') = (V - Z,F, ) (w). So, there exists an homomorphism Z, : S' —
S" such that GyZy = V - Z{Fy, ie., V = Z1Fy + GoZs.

Conversely, let (U, V) € Pg, g, suchthat U = G;Z; and V = Z; F} +
GyZy for some matrices Z; € My,(S), Zy € My, (S), then Hy y(x) =
GoU(y) = GoG1Z,(y) = 0, with x = Fy(y). This means that Hy y = 0,
ie., (U, V) e ker(a) (note that the condition on V was not used). 0

According to the previous proposition, given H € Homg(M, M'), the
matrices U, V for H in general are not unique, however, by Proposition 4

(ii), any generator of [Iy ® F G; ® I;] gives a such pair of matrices

computed by the following algorithm:
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Computation of matrices U and V
Input: Matrices F; and G; asin (3.1).
Output: Matrices U and V as in (3.1) given by
col (U") and col (V).
Initialization: Define the matrix
K=[I,® F} G, ®I].

Compute Syz(K).
Choose any generator of Syz(K) presented as

[col(U?) —col(V)], where col(U!) is a

column vector conformed by the first ss'

entries of the chosen generator and col(V) is a

column vector conformed by the next [']

entries.

Conform U and V with the entries of col(U*) and
col (V).

The previous algorithm is effective, if we know how to compute

syzygies of matrices over S, this holds, for example, if S = R[xq, ..., x, ],

where R is a Noetherian Groébner soluble ring, see [5] and [12].

Definition 7. A commutative ring S is syzygy computable (SC), if
there exists an effective procedure for computing Syz(F) for any matrix
Fover S.

Corollary 8. Let S be a Noetherian SC commutative ring. If M, M’
are finitely generated S-modules, then Homg(M, M') 1is effective
computable.

Proof. Finite presentations for M and M’ as in the Proposition 6,
and a finite set of generators of Syz[Iy ® F/ G; ® I;] can be effective

computed since S is a Noetherian SC ring:
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Syz[Iy ® Ff Gy ® I;]={([col(U}) —col(V})T, ..., [col(U}) —col(V;)]');
from the above algorithm and the proof of Proposition 6, we get that
Homg(M, M’):(HULVI,..., HUtht>' 0
Example 9. We will repeat the example presented in the Section 3 of
[12], but using the previous algorithm. Let S := Zqy[x, y], we want to
compute Homg(M, N), where M =< fi, f, > S% and N =< g1, g5,

gs >c 82, with fi = (3x2%y + 3x, xy — 2y), fo = (Tay® + y, % —4x), g
= (0, x), g9 = (y, x), and g3 = (2x, x). We choose the monomial order

POTREV on Mon(S?) and deglex on Mon(S), with x > y (see [11]).

Step 1. We compute finite presentations for M and IV:

A—B a2 B a0 42 G 43 G N
with

(.2 2 5
Fo _ 3x y+3x Txy +y:|, Fl _ SyZ(F()): |:5i}:|’

| xy — 2y y2 —4x
0 9 5 2x + 9y
Gy = Y x}’ G, = Syz(Gy) = |0 8x
X x X
L 5 y

Step 2. With the notation of the above algorithm, we have s = 2, [ =
1, s' =3, I' = 2, and we must compute Syz(K), with

1 0 0 5 2x + 9y
K=||0 1 0] ® [by5x] |0 8x ® [1]|,
0 0 1 5 y
le.,
5y 5x 0 0 0 0 5 2x + 9y
K = 0 5y 5x 0 0 0 8x
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With the procedure described in [12], we get a system of generators of
Syz(K):

(07 0, 07 07 07 0) 27 0)T7 (_ 1, 07 07 07 _17 07 y7 0)T7 (07 _17 07 0) 07 _17 X, O)T)
(07 07 07 07 07 Oa - y’ 5)T’ (0’ 0’ 0’ 0’ X, — y7 07 O)Ta (Oa Oa 27 07 07 07 07 O)T’
0,0,0,20,0,0,0), (0,0, 2, - 0,0 007", (00,00 20007,

(0,0,0,0,0,2,0,0).

Step 3. From the above generators, we obtain the pair of matrices
(Ui’ Vz)’ 1<1:<10:

[0 9 -1 0] -
U, =0 0’V13:[0}U2:: 0 0, Vo := Oy}
0 -1 o] -
[0 -1 0 0] -
U3:O O,V3—|:O:|;U4—O 0,V4: 5:|’
o 0 0 -
[0 0 0 0]
0 0
U5 = 0 ,V5 =|:0i|,U6 = 2 0 ,V6 =|:0:|,
| x -y 0 0]
[0 0] _ 0 0]
0 0
U7 =10 2 ,V7 = 0j|,U8 =X =y ’V8 =|:0:|,
0o 0 - 0o 0]
[0 0] _ 0 0
0 0
Ug =10 0 s Vg = 0:|, U10 =10 0 N Vl() = |:O:|
2 o0 - 0o 2

We checked that U;F; = G;V;, for each 1 <1 <10.

Step 4. With (3.2), we get the homomorphisms H Ui, Vi l.e., a system
of generators of Homg(M, N). Note that Hy, v, = 0= Hy, v,, thus,

we have only 8 generators:
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10
0 2 1 -2
Hy,, Vz(fl) = [x i/ ;} 0 0 [O} = Lzﬂ =—(g + 8&3);
10
o vy 21 %1 o
Hy,, v, (f2) = Lc x} 0 0 L} - {o} -
1 0

In a similar way, we get

Hy, v,(fi) =0, Hy, v,(fz) = (&1 + &3);
Hy, v,(f) = xg3, Hy,, v, (f2) = -y83;
Hy, v, (fi) = 283, Hy,, v,(f2) = 0;

Hy, v,(fi) =0, Hy, v, (f2) = 283;

Hy,, vy(h) = 283, Hyg, v, (f2) = -y82;
Hy,, v, (f1) = 283, Hy,, vy (f2) = 0;

Hy,, v, (fi) =0, Hy, vy, (f2) = 283.

We observe that these results coincide with those of Section 3 in [12]. In
fact, using the notation of [12], we have Hy, vy, = —¢1, Hy, v, = s,

Hy, vy = 04 — %6, Hyg, v = 93, Hy, v, = 47, Hyg, vy = 02, Hyg, vy = 5,
and HUIOa V10 = ¢8'

References

[1] F. Chyzak, A. Quadrat and D. Robertz, Effective algorithms for parametrizing
linear control systems over Ore algebras, AAECC 16 (2005), 319-376.

[2] T. Cluzeau and A. Quadrat, Factoring and decomposing a class of linear functional
systems, Lin. Alg. and its Appl. 428 (2008), 324-381.

[8] A. Fabiannska and A. Quadrat, Applications of the Quillen-Suslin theorem to
multirankal systems theory, INRIA, Rapport de Recherche n° 6126 (2007).
[4] J. Gago-Vargas, On Suslin’s Stability Theorem for R[xq, ..., x,, ], Ring Theory and

Algebraic Geometry, Lecture Notes in Pure and Applied Mathematics, Vol. 221,
Marcel Dekker, New York, (2001), 203-210.



306

(5]

(6]

(7
(8]

(9]

(10]

(11]

(12]

(13]
(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]
(22]

VERONICA CIFUENTES and OSWALDO LEZAMA

G. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra, 2nd
edition, Springer, 2007.

T. Y. Lam, Serre’s Problem on Projective Modules, Springer Monographs in
Mathematics, Springer, 2006.
S. Lang, Algebra, Springer, 2004.

R. C. Laubenbacher and C. Woodburn, An algorithm for the Quillen-Suslin theorem
for monoid rings, J. Pure Appl. Algebra 117-118 (1997), 395-429.

R. C. Laubenbacher and K. Schlauch, An algorithm for the Quillen-Suslin theorem
for quotients of polynomial rings by monomial ideals, J. Symb. Comp. 30 (2000),
555-571.

R. C. Laubenbacher and C. Woodburn, A new algorithm for the Quillen-Suslin
theorem, Contributions to Algebra and Geometry 41 (2000), 23-31.

0. Lezama, Grébner bases for modules over Noetherian polynomial commutative
rings, Georgian Mathematical Journal 15 (2008), 121-137.

0. Lezama, Some applications of Grobner bases in homological algebra, Sdo Paulo
Journal of Mathematical Sciences 3(1) (2009), 25-59.

0. Lezama et al., Quillen-Suslin rings, Extracta Mathematicae 24(1) (2009).

A. Logar and B. Sturmfels, Algorithms for the Quillen-Suslin theorem, J. Algebra
145(1) (1992).

H. Lombardi, Le contenu constructif d'un principe local-global avec une application a
la structure d’'un module projectif de type fini, Laboratoire de Mathématiques de

Besangon, Université de Franche-Comté, 1997.

H. Lombardi and Quitté, Algebre Commutative, Méthodes Constructives, Modules
Projectifs de Type Fini, 2009:
http://hlombardi.free.fr/

B. MacDonald, Linear Algebra over Commutative Rings, Marcel Dekker, 1984.

H. Park and C. Woodburn, An algorithmic proof of Suslin’s stability theorem for
polynomial rings, J. Algebra 178 (1995), 277-298.

A. Quadrat and D. Robertz, Computation of bases of free modules over the Weyl
algebras, Journal of Symbolic Computation (2007), doi:10.1016/j.js¢c.2007.06.005.

D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976),
167-171.

J. dJ. Rotman, An Introduction to Homological Algebra, Academic Press, 1979.

A. A. Suslin, Projective modules over polynomial rings are free, Soviet Math. Dokl.
17 (1976), 1160-1164.



